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A. Experimental Setups

Dataset. We conduct experiments on three benchmarks, i.e. classification on ImageNet, CIFAR-100, and Pets, for classifica-
tion task. Specifically, we pretrain the model on ImageNet and verify the transfer learning performance on CIFAR and Pets.
For ImageNet classification, we use the basic data augmentation methods during training, i.e. the input images are randomly
cropped to 224 x224 with the horizontal flip.

Model. We conduct the experiments on three representative lightweight models including the ResNet18 [3], MobileNetV2
[5], and EfficientNetLite-BO [6].

Hyper-parameters. The bit-width candidates are set to {2, 3, 4, 5, 6} for both weight and activation quantization, we
additionally remove 2-bits for Depthwise convolutions since they are already compact. Following the previous practices
[1, 7, 9], the first and last layers are fixed to 8 bits. We set A = 1.5 for searching.

For training, we adopt the SGD optimizer with cosine learning rate scheduler, the initial learning rate is set to 0.04 and
the first 5 epochs are used as warm-up. We train the model for overall 150 epochs. The hyper-parameter ¢ in Eq. (6) is set to
0.25, and @ in Eq. (8) is set to 6, the weight-decay is set to 2.5 x 1075 [1, 7, 8]. We randomly sample K = 3 mixed-precision
policies at each training step. Furthermore, to ensure an unbiased large output set {OZH }lL:_O1 is used for Information Distortion
Mitigation (Sec. 3.4), we additionally sample a policy where each layer is the maximum bit-width. The hyper-parameter &
for Information Distortion Mitigation loss is set to 1le — 2. We use the LSQ quantizer [1], we adopt Adam to optimize the
scaling factors of these quantizers, the learning rate is set to le — 5 without weight-decay.

B. Implementation Details

B.1. Bit-width Policy Sampling

According to Sec. 3.1, we approximate the expectation term over the whole search space by Monte-Carlo sampling, the
forward propagation is defined as follows:
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where A is the search space, S is the mixed-precision quantization policy (i.e., the bit-width of each layer), that is, the joint
gradients are defined as follows:
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We adopt random sampling from a uniform distribution of all possible mixed-precision quantization policies, thus W( k)

the parameters of uniformly sampled policy Sy.
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Algorithm 1: Bit-width Policy Sampling and Dynamic Training
Input: Full-precision Network f; Bit-list; Learning rate p; Bit-width freezing rate X'; Number of sampled policies K; Profiling
window M.
Output: Retraining-free Weight-sharing Model.
1 Initialize the quantizer;
2 forr=1,..,T do

3 Get batch of input data x and label y;
4 if 1t % M == 0 then
/+ Profile the unstable weights AW'S***'® and freeze the corresponding bit-widths
according to Eg. (6) and Eqg. (7). */
5 () — TopKToFreeze( AWk, ).
6 end
7 Clear gradients of weights, optimizer.zero_grad();
8 L = length(layers);
9 for k=0,...,K-1 do
/* Sample K mixed-precision policies and compute the gradients. */
10 Sample k-th layer-wise policy from the bit-width list to construct
Sk = {(random.choice(weight_list), random.choice(act_list)) f;ol;
11 Switch f’s each layer to bit-width policy Sk;
12 Get the quantized parameters W(Sk) of k-th policy Sy from the shared latent weights W;
13 Compute outputs under k-th policy ¥ = f(x; Sk, WSk .
/* Compute Cross-Entropy loss Lcg = CE(y,¥), Quantization Error Minimization loss
Lqoe (Eq. (C)), Information Distortion Mitigation Loss Lipwm. x/
/* k and 0 are the hyper-parameters for weighting the loss. */
14 Loss = Lce + KLqE + 0LipMm;
15 Compute gradients through BP, V(s,) = Loss.backward();
16 end
/* Use joint gradients to update the whole network. */
17 Aggregate above gradients to get g, for updating the latent weights W;
18 Update f’s parameters Wy = W;_1 — p * g,

19 end

In summary, at training step ¢, we first compute the gradients of K ramdomly sampled policies, and we aggregate the above
gradient to update the parameters of whole network. During this sampling process, the dynamic training is incorporated. The
pseudocode is shown in Alg. 1.

B.2. Optimization

Fairness Regularization. We disable the weight-decay for current smallest bit-width for ensuring proper regularization.
Specifically, if a layer samples the current smallest bit-width, we add an additional negative weighted L2 term to the latent
weights that fall within the clipping range of that smallest bitwidth, with the same value as the weight-decay term.
Quantization Error Minimization. We also explicitly optimize the distance between full-precision latent weights W and
the quantized weights W to reduce the quantization error as follows:

1 K-1 (Sk) 1 K—-1L-1
5Ok
Lop = 7 kZO W = Wy = — kZO 120 1@yt cs, (Wi ) = Willa, (©)

where K represents the number of sampled policies in each training iteration, L is the number of layers, and Q(;-) is the
quantizer. More details about the notations please refer to Sec. 3.1.

B.3. Training Stability Estimation

The reasons for using distance between full-precision (FP) and quantized weights for estimating the training stability in
Eq. (6) are as follows: (i) The distance depicts the rounding errors—large rounding errors in weight-sharing mean the weights
are more vulnerable. For example, suggest an FP weight is 0.3999, and the two neighboring quantized weights of a certain



Profile current No +or- Compute & save Recover : & +or- the bit-
complexity H the bit-width the forward loss the bit-width width (permanently)

Figure A. Illustration of our bidirectional greedy search method.

bit-width are 0.0 and 0.8 (i.e., quantization bound is 0.4), meaning very small perturbations induced by other bit-widths on
full-precision weight could make it large than 0.4 and cause the quantized weight change from 0.0 to next value 0.8 and then

go back to 0.0, causing training instability (shown in Fig. 1); (ii) recent studies [2, 4] find that the large quantization error
will disturb the quantization-aware training.

C. Bidirectional Greedy Search

We show the illustration of our search framework in Fig. A.
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